Path Related Hetro-Cordial Graphs

Dr. A. Nellai Murugan
Department of Mathematics, V.O.Chidambaram College, Tuticorin, Tamilnadu, India.
V. Selva Vidhya
Department of Mathematics, V.O.Chidambaram College, Tuticorin, Tamilnadu, India.

Abstract

Let $\mathbf{G}=(\mathbf{V}, \mathrm{E})$ be a graph with \mathbf{p} vertices and \mathbf{q} edges. A Hetro-Cordial labeling of a graph G with vertex set V is a bijection from V to $\{0,1\}$ such that each edge $u v$ is assigned the label 0 if $f(u)=f(v)$ or 1 if $f(u) \neq f(v)$ with the condition that the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by atmost 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by atmost 1 . The graph that admits a Hetro-Cordial labeling is called a Hetro Cordial Graph (HeCG). In this paper, we proved that path related graphs Path P_{n}, Comp $P_{n} \Theta K_{1}$, Fan $P_{n}+K_{1}$, Double fan $\mathbf{P}_{\mathbf{n}}+\mathbf{2 K} \mathbf{1}$, Ladder $\mathbf{P}_{\mathbf{n}} \mathbf{X ~ K} \mathbf{K}_{\mathbf{2}}$ are Hetro-Cordial Graphs.

Index Terms - Fan, Comp, Doublefan, Ladder, Hetro-Cordial Graph, Hetro-Cordial labeling, 2000 Mathematics Subject classification 05 C 78 .

1. INTRODUCTION

A graph G is a finite nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges. Each pair $e=\{u v\}$ of vertices in E is called edges or a line of G. In this paper, we proved that path related graphs Path P_{n}, Comp $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$, Fan $\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}$, Doublefan $\mathrm{P}_{\mathrm{n}}+2 \mathrm{~K}_{1}$, Ladder $\mathrm{P}_{\mathrm{n}} \mathrm{X} \mathrm{K} \mathrm{K}_{2}$ are Hetro-Cordial Graphs. For graph theory terminology, we follow [2].

2. PRELIMINARIES

Let $G=(V, E)$ be a graph with p vertices and q edges. A HetroCordial labeling of a Graph G with vertex set V is a bijection from V to $\{0,1\}$ such that each edge $u v$ is assigned the label 0 if $f(u)=f(v)$ or 1 if $f(u) \neq f(v)$ with the condition that the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by atmost 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by atmost 1 .

The graph that admits a Hetro-Cordial labeling is called a Hetro-Cordial Graph (HCG). In this paper, we proved that path related graphs Path P_{n}, Comp $P_{n} \odot K_{1}$, Fan $P_{n}+K_{1}$, Doublefan $P_{n}+2 K_{1}$, Ladder $P_{n} X K_{2}$ are Hetro-Cordial Graphs.
Definition: 2.1

[^0]Definition: 2.2
The join of G_{1} and G_{2} is the graph $G=G_{1}+G_{2}$ with vertex set $V=V_{1} U V_{2}$ and edge set $E=E_{1} \cup E_{2} \cup\left\{U V: u \in V_{1}, v \in V_{2}\right\}$. The graph $P_{n}+K_{1}$ is called a Fan and $P_{n}+2 K_{1}$ is called the Doublefan.

Definition: 2.3
The product $G_{1} \times G_{2}$ of two graphs G_{1} and G_{2} is defined to be the graph whose vertex set is $V_{1} \times V_{2}$ and two vertices $u=\left(u_{1}\right.$, $\left.u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V=V_{1} x V_{2}$ are adjacent in $G_{1} \times G_{2}$ if either $\mathrm{u}_{1}=\mathrm{v}_{1}$ and u_{2} is adjacent to v_{2} or $\mathrm{u}_{2}=\mathrm{v}_{2}$ and u_{1} is adjacent to $\mathrm{v}_{1} . \mathrm{P}_{\mathrm{n}} \mathrm{XK}_{2}$ is called a ladder.

Definition: 2.4
The corona $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph G obtained by taking one copy of G_{1} (which has P_{1} points) and P_{1} copies of G_{2} and joining the $i^{\text {th }}$ point of G_{1} to every point in the $i^{\text {th }}$ copy of G_{2}. The graph $P_{n} \odot K_{1}$ is called a comb.

3. MAIN RESULTS

Theorem: 3.1
Path P_{n} (n -odd) is Hetro-Cordial Graph.
Proof:
Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\left[\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$ and

$$
\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\left[\left(\mathrm{u}_{i} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i} \leq \mathrm{n}-1\right]\right\} .
$$

Define $f: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right) \rightarrow\{0,1\}$.
Case: 1
When $n=3$,
The labeling is,

Case: 2
When $\mathrm{n}>3$,

International Journal of Emerging Technologies in Engineering Research (IJETER)

The vertex labeling are,

$$
f\left(\mathrm{u}_{\mathrm{i}}\right) \quad=\left\{\begin{array}{ll}
0 & \mathrm{i} \equiv 0,3 \bmod 4 \\
1 & \mathrm{i} \equiv 1,2 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
$$

The induced edge labeling are,

$$
f^{*}\left[\left(u_{i} u_{i+1}\right)\right]=\left\{\begin{array}{ll}
1 & i \equiv 0 \bmod 2 \\
0 & i \equiv 1 \bmod 2
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
$$

Here, $\mathrm{v}_{f}(1)=\mathrm{v}_{f}(0)+1 \quad$ for all n and
$\mathrm{e}_{f}(1)=\mathrm{e}_{f}(0) \quad$ for all n.
Therefore, Path Pn satisfies the conditions $\quad\left|\mathrm{v}_{f}(0)-\mathrm{v}_{f}(1)\right|$ ≤ 1 and $\left|\mathrm{e}_{f}(0)-\mathrm{e}_{f}(1)\right| \leq 1$.

Hence, Path Pn (n -odd) is Hetro-Cordial Graph.
For example, Hetro-Cordial labeling of P5 is shown in the following fig 3.2

Theorem: 3.3
Path $\mathrm{P}_{\mathrm{n}}(\mathrm{n}$-even) is Hetro-Cordial Graph.
Proof:
Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\left[\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$ and

$$
E\left(P_{n}\right)=\left\{\left[\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right]\right\} .
$$

Define $f: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right) \rightarrow\{0,1\}$.
Case: 1
When $\mathrm{n}=2$,
The labeling is,

0 1

Case: 2
0
When $\mathrm{n}>2$,
The vertex labeling are,
$f\left(\mathrm{u}_{\mathrm{i}}\right) \quad=\left\{\begin{array}{ll}0 & \mathrm{i} \equiv 2,3 \bmod 4 \\ 1 & \mathrm{i} \equiv 0,1 \bmod 4\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.$
The induced edge labeling are,
$f^{*}\left[\left(u_{i} u_{i+1}\right)\right]=\left\{\begin{array}{ll}0 & i \equiv 0 \bmod 2 \\ 1 & i \equiv 1 \bmod 2\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1\right.$
Here, $\quad \mathrm{v}_{f}(0)=\mathrm{v}_{f}(1)$
$\mathrm{e}_{f}(1)=\mathrm{e}_{f}(0)+1$
for all n and for all n .

Therefore, Path P_{n} satisfies the conditions $\mid \mathrm{v}_{f}(0)-\mathrm{v}_{f}$ (1) $\mid \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Hence, Path $P_{n}(n$-even) is Hetro-Cordial Graph.
For example, Hetro-Cordial labeling of P_{6} is shown in the following fig 3.4

Theorem: 3.5
Comp Pn \odot K1 is Hetro-Cordial Graph.
Proof:
Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=\left\{\left[\mathrm{u}_{\mathrm{i}}, \mathrm{vi}: 1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$ and

$$
\mathrm{E}\left(\mathrm{P}_{\mathrm{n}} \odot K_{1}\right)=\left\{[(\mathrm { u } _ { \mathrm { i } } \mathrm { u } _ { \mathrm { i } + 1 }) : 1 \leq \mathrm { i } \leq \mathrm { n } - 1] \cup \quad \left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right): 1 \leq \mathrm{i}\right.\right.
$$

$\leq \mathrm{n}]\}$.
Define $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \rightarrow\{0,1\}$.
The vertex labeling are,

$f\left(\mathrm{u}_{\mathrm{i}}\right)$	$=0$	$1 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(\mathrm{v}_{\mathrm{i}}\right)$	$=1$	$1 \leq \mathrm{i} \leq \mathrm{n}$

The induced edge labeling are,

$$
\begin{array}{llll}
f^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right] & =0 & 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
f^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)\right] & =1 & 1 \leq \mathrm{i} \leq \mathrm{n}
\end{array}
$$

Here, $\mathrm{v}_{f}(0)=\mathrm{v}_{f}(1) \quad$ for all n and

$$
\mathrm{e}_{f}(0)=\mathrm{e}_{f}(1)+1 \quad \text { for all } \mathrm{n} .
$$

Therefore, comp Pn@K1 satisfies the conditions $\mid \mathrm{v}_{f}(0)$ $\mathrm{v}_{f}(1) \mid \leq 1$ and $\left|\mathrm{e}_{f}(0)-\mathrm{e}_{f}(1)\right| \leq 1$.

Hence, Comp $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is Hetro-Cordial.
For example, Hetro-Cordial labeling of P4@K1 and P3○K1 is shown in the following fig 3.6 and fig 3.7 respectively.

fig 3.6: $\mathrm{P}_{4} \odot \mathrm{~K}_{1}$

fig 3.7: $\mathrm{P}_{3} \odot \mathrm{~K}_{1}$
Theorem: 3.8
Fan $\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}$ (n -odd) is Hetro-Cordial Graph.
Proof:
Let $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right)=\{[\mathrm{u}, \mathrm{ui}: 1 \leq \mathrm{i} \leq \mathrm{n}]\}$ and $E\left(P_{n}+K_{1}\right)=\left\{\left[\left(u_{i}\right): 1 \leq i \leq n\right] \cup\left[\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-\right.\right.$ 1] $\}$.
Define $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right) \rightarrow\{0,1\}$.
The vertex labeling are,

$$
\begin{array}{ll}
f(\mathrm{u}) & =0 \\
f\left(\mathrm{u}_{\mathrm{i}}\right) & =\left\{\begin{array}{ll}
0 & \mathrm{i} \equiv 0,3 \bmod 4 \\
1 & \mathrm{i} \equiv 1,2 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
\end{array}
$$

The induced edge labeling are,
$f^{*}\left[\left(\mathrm{uu}_{\mathrm{i}}\right)\right] \quad=\left\{\begin{array}{lll}0 & \mathrm{i} \equiv 0,3 \bmod 4 \\ 1 & \mathrm{i} \equiv 1,2 \bmod 4\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.$
$f^{*}\left[\left(u_{i} u_{i+1}\right)\right]=\left\{\begin{array}{ll}0 & i \equiv 1 \bmod 2 \\ 1 & i \equiv 0 \bmod 2\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1\right.$
Here, $\quad \mathrm{v}_{f}(1)=\mathrm{v}_{f}(0)+1 \quad$ for all n and $\mathrm{e}_{f}(1)=\mathrm{e}_{f}(0)+1$ for all n.
Therefore, Fan $\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}$ (n-odd) satisfies the conditions $\mid \mathrm{v}_{f}$ (0) $-\mathrm{v}_{f}(1) \mid \leq 1$ and $\quad\left|\mathrm{e}_{f}(0)-\mathrm{e}_{f}(1)\right| \leq 1$.

Hence, Fan $\mathrm{Pn}+\mathrm{K}_{1}$ (n -odd) is Hetro-Cordial Graph.
For example, Hetro-Cordial labeling of $\mathrm{P}_{5}+\mathrm{K}_{1}$ is shown in the following fig 3.9

fig 3.9: $\mathrm{P}_{5}+\mathrm{K}_{1}$

Theorem: 3.10
Fan $\mathrm{Pn}+\mathrm{K}_{1}$ (n -even) is Hetro-Cordial Graph.
Proof:
Let $\quad \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right)=\{[\mathrm{u}, \mathrm{ui}: 1 \leq \mathrm{i} \leq \mathrm{n}]\}$ and
$\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right)=\left\{\left[\left(\mathrm{uu}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right] \cup \quad\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i} \leq\right.\right.$ $\mathrm{n}-1]$ \}.
Define $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}\right) \rightarrow\{0,1\}$.
The vertex labeling are,
$f(\mathrm{u}) \quad=1$
$f\left(\mathrm{u}_{\mathrm{i}}\right) \quad=\left\{\begin{array}{ll}0 & \mathrm{i} \equiv 0,1 \bmod 4 \\ 1 & \mathrm{i} \equiv 2,3 \bmod 4\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.$
The induced edge labeling are,

$$
\begin{aligned}
& f^{*}\left[\left(\mathrm{uu}_{\mathrm{i}}\right)\right]=\left\{\begin{array}{ll}
0 & \mathrm{i} \equiv 2,3 \bmod 4 \\
1 & \mathrm{i} \equiv 0,1 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right. \\
& f^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=\left\{\begin{array}{ll}
0 & \mathrm{i} \equiv 0 \bmod 2 \\
1 & \mathrm{i} \equiv 1 \bmod 2
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1\right.
\end{aligned}
$$

Here, $\mathrm{v}_{f}(1)=\mathrm{v}_{f}(0)+1 \quad$ for all $\mathrm{n} \quad$ and $\mathrm{e}_{f}(1)=\mathrm{e}_{f}(0)+1 \quad$ for all n.

Therefore, Fan $\mathrm{P}_{\mathrm{n}}+\mathrm{K}_{1}$ (n-even) satisfies the conditions $\left|\mathrm{v}_{f}(0)-\mathrm{v}_{f}(1)\right| \leq 1$ and $\quad \mid \mathrm{e}_{f}(0)-\mathrm{e}_{f}(1)$ $\mid \leq 1$.

Hence, Fan Pn+K K_{1} (n -even) is Hetro-Cordial Graph.
For example, Hetro-Cordial labeling of $\mathrm{P}_{6}+\mathrm{K}_{1}$ is shown in the following fig 3.11

Fig 3.11: $\mathrm{P}_{6}+\mathrm{K}_{1}$
Theorem: 3.12
Ladder $\operatorname{Pn~X~K} 2$ (n-odd) is a Hetro-Cordial Graph.
Proof:
Let $V\left(\mathrm{P}_{\mathrm{n}} \times \mathrm{K}_{2}\right)=\left\{\left[\mathrm{u}_{\mathrm{i}}\right.\right.$, vi: $\left.\left.1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$ and

International Journal of Emerging Technologies in Engineering Research (IJETER)
Volume 2, Issue 3, October (2015)
www.ijeter.everscience.org
$E\left(P_{n} X K_{2}\right)=\left\{\left[\left(u_{i} u_{i+1}\right) \cup\left(v_{i} v_{i+1}\right): 1 \leq i \leq n-1\right] U\right.$ $\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.

Define $f: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \mathrm{X} \mathrm{K}_{2}\right) \rightarrow\{0,1\}$.
Case 1:
When $\mathrm{n} \equiv 1(\bmod 4)$,
The vertex labeling are,

$$
\begin{array}{ll}
f\left(\mathrm{u}_{\mathrm{i}}\right) & =0 \quad 1 \leq \mathrm{i} \leq \frac{\mathrm{n}+1}{2} \\
f\left(\mathrm{u}_{\mathrm{i}}\right) & =\left\{\begin{array}{ll}
0 & \mathrm{i} \equiv 1 \bmod 2 \\
1 & \mathrm{i} \equiv 0 \bmod 2
\end{array} \quad \frac{\mathrm{n}+3}{2} \leq \mathrm{i} \leq \mathrm{n}\right. \\
f\left(\mathrm{v}_{\mathrm{i}}\right) & =\left\{\begin{array}{ll}
0 & \mathrm{i} \equiv 0 \bmod 2 \\
1 & \mathrm{i} \equiv 1 \bmod 2
\end{array} \quad 1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2}\right. \\
f\left(\mathrm{v}_{\mathrm{i}}\right) & =1 \quad \frac{\mathrm{n}+1}{2} \leq \mathrm{i} \leq \mathrm{n}
\end{array}
$$

The induced edge labeling are,

$$
\begin{aligned}
& f^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=0 \\
& f^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2} \\
& f^{*}\left[\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)\right]=1 \\
& f^{*}\left[\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)\right]=0
\end{aligned} \quad \begin{aligned}
& \frac{\mathrm{n}+1}{2} \leq \mathrm{i} \leq \mathrm{n}-1 \\
& 2
\end{aligned} \mathrm{i} \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2}-1 .
$$

Here, $\quad \mathrm{v}_{f}(0)=\mathrm{v}_{f}(1)$ for all n and

$$
\mathrm{e}_{f}(1)=\mathrm{e}_{f}(0)+1 \text { for all } \mathrm{n} .
$$

Therefore, Ladder $\operatorname{Pn} \mathrm{X}_{2}$ satisfies the conditions $\mid \mathrm{v}_{f}(0)$ $\mathrm{v}_{f}(1) \mid \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Case 2:
When $\mathrm{n} \equiv 3(\bmod 4)$
The vertex labeling are,

$$
\begin{array}{ll}
f\left(\mathrm{u}_{\mathrm{i}}\right) & =0 \\
1 \leq \mathrm{i} \leq \frac{\mathrm{n}+1}{2} \\
f\left(\mathrm{u}_{\mathrm{i}}\right) & =\left\{\begin{array}{ll}
0 & \mathrm{i} \equiv 0 \bmod 2 \\
1 & \mathrm{i} \equiv 1 \bmod 2
\end{array} \quad \frac{\mathrm{n}+3}{2} \leq \mathrm{i} \leq \mathrm{n}\right. \\
f\left(\mathrm{v}_{\mathrm{i}}\right) & =\left\{\begin{array}{ll}
0 & \mathrm{i} \equiv 1 \bmod 2 \\
1 & \mathrm{i} \equiv 0 \bmod 2
\end{array} \quad 1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2}\right. \\
f\left(\mathrm{v}_{\mathrm{i}}\right) & =1 \quad \frac{\mathrm{n}+1}{2} \leq \mathrm{i} \leq \mathrm{n}
\end{array}
$$

The induced edge labeling are,

$$
\begin{aligned}
& f^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right] \quad=0 \quad 1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2} \\
& f^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=1 \quad \frac{\mathrm{n}+1}{2} \leq \mathrm{i} \leq \mathrm{n}-1
\end{aligned}
$$

$$
\begin{aligned}
& f^{*}\left[\left(\mathrm{v}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}+1}\right)\right]=1 \quad 1 \leq \mathrm{i} \leq \frac{\mathrm{n}-1}{2} \\
& f^{*}\left[\left(\mathrm{v}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}+1}\right)\right]=0 \\
& f^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)\right]=\left\{\begin{array}{ll}
0 & \mathrm{i} \equiv 1 \bmod 2 \\
1 & \mathrm{i} \equiv 0 \bmod 2
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
\end{aligned}
$$

Here, $\quad v_{f}(0)=v_{f}(1)$ for all n and

$$
\mathrm{e}_{f}(0)=\mathrm{e}_{f}(1)+1 \text { for all } \mathrm{n} .
$$

Therefore,Ladder $\mathrm{P}_{\mathrm{n}} X \mathrm{~K}_{2}$ satisfies the conditions $\mid \mathrm{v}_{f}(0)-\mathrm{v}_{f}$ (1) $\mid \leq 1$ and $\left|\mathrm{e}_{f}(0)-\mathrm{e}_{f}(1)\right| \leq 1$.

Hence,Ladder $\mathrm{P}_{\mathrm{n}} \mathrm{X} \mathrm{K}_{2}$ (n -odd) is a Hetro-Cordial Graph.
For example, Hetro-Cordial labeling of P3 X K ${ }_{2}$ and $\mathrm{P}_{5} \mathrm{X} \mathrm{K}_{1}$ are shown in the following fig 3.13 and fig 3.14 respectively.

fig 3.13: $\mathrm{P}_{3} \mathrm{XK}_{2}$

fig 3.14: $\mathrm{P}_{5} \times \mathrm{K}_{2}$
Theorem: 3.15
Doublefan $\mathrm{P}_{\mathrm{n}}+2 \mathrm{~K}_{1 \text { isHerto-Cordial Graph. }}$
Proof:
Case: 1
When $\mathrm{n}=2$,
The labeling is,

Case: 2
When $\mathrm{n}=3$,
The labeling is,

Case: 3

When $\mathrm{n}>3$,

$$
\text { Let } \begin{aligned}
& V\left(P_{n}+2 K_{1}\right)=\{[u, v, u i: 1 \leq i \leq n]\} \text { and } \\
& E\left(P_{n}+2 K_{1}\right)=\left\{[(u _ { i }) : 1 \leq i \leq n] \cup \left[\left(\mathrm{vu}_{\mathrm{i}}\right): 1\right.\right. \\
& \left.\left.\leq \mathrm{i} \leq \mathrm{n}] \cup\left[\left(\mathrm{u}_{u_{i}}\right): 1 \leq \mathrm{i}\right): 1 \leq \mathrm{n}-1\right]\right\} .
\end{aligned}
$$

Define f:V $\left(\mathrm{P}_{\mathrm{n}}+2 \mathrm{~K}_{1}\right) \rightarrow\{0,1\}$.
The vertex labeling are,

$$
\begin{aligned}
& f\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}
0 & \mathrm{i} \equiv 0,1 \bmod 4 \\
1 & \mathrm{i} \equiv 2,3 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right. \\
& f(\mathrm{u}) \quad=1 \\
& f(\mathrm{v}) \quad=0
\end{aligned}
$$

The induced edge labeling are,
$f^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=\left\{\begin{array}{ll}0 & \mathrm{i} \equiv 0 \bmod 2 \\ 1 & \mathrm{i} \equiv 1 \bmod 2\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1\right.$
$f^{*}\left[\left(u_{i}\right)\right]=\left\{\begin{array}{ll}0 & \mathrm{i} \equiv 2,3 \bmod 4 \\ 1 & \mathrm{i} \equiv 0,1 \bmod 4\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.$
$f^{*}\left[\left(\mathrm{vu}_{\mathrm{i}}\right)\right]=\left\{\begin{array}{ll}0 & \mathrm{i} \equiv 0,1 \bmod 4 \\ 1 & \mathrm{i} \equiv 2,3 \bmod 4\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.$

Here, $\quad \mathrm{v}_{f}(0)=\mathrm{v}_{f}(1) \quad$ for $\mathrm{n} \equiv 0,2 \bmod 4$, $\mathrm{v}_{f}(1)=\mathrm{v}_{f}(0)+1$ for $\mathrm{n} \equiv 3 \bmod 4$,
$\mathrm{v}_{f}(0)=\mathrm{v}_{f}(1)+1$ for $\mathrm{n} \equiv 1 \bmod 4$,
$\mathrm{e}_{f}(1)=\mathrm{e}_{f}(0)+1$ for $\mathrm{n} \equiv 0,2 \bmod 4$ and
$\mathrm{e}_{f}(0)=\mathrm{e}_{f}(1)$ for $\mathrm{n}=1,3 \bmod 4$.
Therefore, Doublefan $\mathrm{Pn}+2 \mathrm{~K}_{1}$ satisfies the conditions $\mid \mathrm{v}_{f}(0)$ $v_{f}(1) \mid \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Hence,Doublefan $\mathrm{P}_{\mathrm{n}}+2 \mathrm{~K}_{1}$ is a Hetro-Cordial Graph.

For example, Hetro-Cordial labeling of $\mathrm{P}_{4}+2 \mathrm{~K}_{1}$ and $\mathrm{P}_{5}+2 \mathrm{~K}_{1}$ are shown in the following fig3.16 and fig 3.17 respectively.

Fig 3.16: $\mathrm{P}_{4}+2 \mathrm{~K}_{1}$

fig.3.17: $\mathrm{P}_{5}+2 \mathrm{~K}_{1}$

4. CONCLUSION

Hetro cordial is nothing but the principle is just a reverse of homo cordial. As homo cordial hetro cordial find its own applications.

REFERENCES

[1] Gallian. J.A,A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinotorics 6(2001)\#DS6.
[2] Harary,F.(1969), Graph Theory, Addision - Wesley Publishing Company Inc, USA.

International Journal of Emerging Technologies in Engineering Research (IJETER)

[3] A.NellaiMurugan (September 2011), Studies in Graph theory- Some Labeling Problems in Graphs and Related topics, Ph.D Thesis.
[4] A.Nellai Murugan and V.Baby Suganya, Cordial labeling of path related splitted graphs, Indian Journal of Applied Research ISSN 2249 555X,Vol.4, Issue 3, Mar. 2014, ISSN 2249 - 555X , PP 1-8. I .F . 2.1652.
[5] A.Nellai Murugan and M. Taj Nisha, A study on divisor cordial labelling of star attached paths and cycles, Indian Journal of Research ISSN 2250 -1991,Vol.3, Issue 3, Mar. 2014, PP 12-17. I .F . 1.6714.
[6] A.Nellai Murugan and V.Brinda Devi, A study on path related divisor cordial graphs International Journal of Scientific Research, ISSN 22778179, Vol.3, Issue 4, April. 2014, PP 286 - 291. I .F . 1.8651.
[7] A.Nellai Murugan and A Meenakshi Sundari, On Cordial Graphs International Journal of Scientific Research, ISSN 2277-8179,Vol.3, Issue 7 ,July. 2014, PP 54-55. I .F. 1.8651
[8] A.Nellai Murugan and A Meenakshi Sundari, Results on Cycle related product cordial graphs, International Journal of Innovative Science, Engineering \& Technology, ISSN 2348-7968,Vol.I, Issue 5 ,July. 2014, PP 462-467.IF 0.611.
[9] A.Nellai Murugan and P.Iyadurai Selvaraj, Cycle and Armed Cup cordial graphs, International Journal of Innovative Science, Engineering \& Technology, ISSN 2348-7968,Vol.I, Issue 5 ,July. 2014,PP 478-485. IF 0.611 .
[10] A.Nellai Murugan and G.Esther, Some Results on Mean Cordial Labelling, International Journal of Mathematics Trends and Technology ,ISSN 2231-5373,Volume 11, Number 2,July 2014,PP 97-101.
[11] A.Nellai Murugan and A Meenakshi Sundari, Path related product cordial graphs, International Journal of Innovation in Science and Mathematics , ISSN 2347-9051,Vol 2., Issue 4 ,July 2014, PP 381-383.
[12] A.Nellai Murugan and P. Iyadurai Selvaraj, Path Related Cup Cordial graphs, Indian Journal of Applied Research, ISSN 2249 -555X,Vol.4, Issue 8, August. 2014, PP 433-436.
[13] A.Nellai Murugan , G.Devakiriba and S.Navaneethakrishnan, Star Attached Divisor cordial graphs, International Journal of Innovative Science, Engineering \& Technology, ISSN 2348-7968,Vol.I, Issue 6 ,August. 2014, PP 165-171.
[14] A.Nellai Murugan and G. Devakiriba, Cycle Related Divisor Cordial Graphs, International Journal of Mathematics Trends and Technology, ISSN 2231-5373, Volume 12, Number 1,August 2014,PP 34-43.
[15] A.Nellai Murugan and V.Baby Suganya, A study on cordial labeling of Splitting Graphs of star Attached C_{3} and $(2 \mathrm{k}+1) \mathrm{C}_{3}$ ISSN 2321 8835, Outreach, A Multi Disciplinary Refreed Journal, Volume . VII, 2014, 142 -147. I.F 6.531.
[16] A.Nellai Murugan and V.Brinda Devi, A study on Star Related Divisor cordial Graphs ,ISSN 2321 8835, Outreach , A Multi Disciplinary Refreed Journal, Volume . VII, 2014, 169-172. I.F 6.531.
[17] A.Nellai Murugan and M. Taj Nisha, A study on Divisor Cordial Labeling Star Attached Path Related Graphs, ISSN 2321 8835, Outreach , A Multi Disciplinary Refreed Journal, Volume . VII, 2014, 173-178. I.F 6.531 .
[18] A .Nellai Murugan and V .Sripratha, Mean Square Cordial Labelling, International Journal of Innovative Research \& Studies, ISSN 2319-9725 ,Volume 3, Issue 10Number 2 ,October 2014, PP 262-277.
[19] A.Nellai Murugan and G. Esther, Path Related Mean Cordial Graphs, Journal of Global Research in Mathematical Archive , ISSN 23205822 , Volume 02, Number 3,March 2014,PP 74-86.
[20] A. Nellai Murugan and A. Meenakshi Sundari , Some Special Product Cordial Graphs, Proceeding of the UGC Sponsored National Conference on Advances in Fuzzy Algebra, Fuzzy Topology and Fuzzay Graphs, Journal ENRICH , ISSN 2319-6394, January 2015, PP 129-141.
[21] L. Pandiselvi ,S.Navaneethakrishan and A. Nellai Murugan ,Fibonacci divisor Cordial Cycle Related Graphs, Proceeding of the UGC Sponsored National Conference on Advances in Fuzzy Algebra, Fuzzy Topology and Fuzzay Graphs, Journal ENRICH , ISSN 2319-6394, January 2015, PP 142-150.

Authors

Dr. A. Nellai Murugan, Associate Professor, S.S.Pillai Centre for Research in Mathematics, Department of Mathematics, V.O.Chidambaram College, Thoothukudi. College is affiliated to Manonmanium sundaranar University, Tirunelveli-12, TamilNadu. He has thirty two years of Post Graduate teaching experience in which twelve years of Research experience. He is guiding six Ph.D Scholars. He has published more than seventy research papers in reputed national and international journals.

V. Selva Vidhya She is a full time M.Sc Student, Department of Mathematics, V.O. Chidambaram College, Tuticorin. Her Project in the second year is labeling in Graph. She published two Research Article and Two more in communication.

[^0]: P_{n} is a path of length $\mathrm{n}-1$.

